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SECTION 1
INTRODUCTION

Ejectors have been used in man, useful applications in
industry. Ejectors have also been investigated for flight appli-
- cations and their potential usefulness has been demonstrated in

experimental aircraft.

It has been known for some time (see, for example, references
1 through 4) that a control volume analysis of a constant area
ejector leads to a double-valued solution: one where the mixed
flow is subsonic, and the other where the mixed flow is supersonic.
Further, it is well known that these two solutions are related

by the normal shock relations.

Recently, Alperin and Wu5 have pointed out the potential
advantages of the supersonic branch for applications to thrust
augmentation. Minardi et al.6, who were studying two fluid
ejectors for applications in turbines, also found better results

for their applications when the supersonic branch was utilized.

Extremely high efficiencies (based on thermodynamic avail-
ability) are indicated on the supersonic solution branch. In fact,

following Hoge3, it can be shown7’8

that extremely high efficiencies
can also occur on the subsonic solution branch. However, as dis-
cussed in reference 7, these extremely high efficiencies cannot
be achieved in an ejector. Rather, they would reguire rotating
machinery within the control volume to produce the extremely high
efficiencies. It was shown in reference 7 that an ejector with
a subsonic inlet for the secondary flow (the primary is supersonic
at the inlet) operates at a single operating point when the exit

« flow is supersonic. This operating point can be determined by
the methods described by Fabri and Siestrunckz. Thus, a procedure
is available to evaluate the performance of an ejector operating

on the supersonic solution branch.

It was the purpose of the study reported herein to determine

ks
-§$ reasonable estimates of thrust augmentation that could be achieved
;Q? with an ejector over a range of Mach numbers from zero to supersonic.
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SECTION 2
DISCUSSION OF THE SUPERSONIC SOLUTION BRANCH

In reference 7 an analysis for a constant area ejector, such
as shown in Figure 1, is presented. The equations resulting from
the solution are presented in Appendix A. Figure 2 presents
supersonic branch solutions to the equations for air driving air
for a pressure ratio of six and a temperature ratio of 3.7 and
for a series of bypass ratios, B, from 0.5 to 10. The curves
show efficiency, based on thermodynamic availability, versus the
secondary, inlet Mach number, MS. As stated earlier there is also
a subsonic solution branch (not shown on Figure 2) which is re-
lated to the supersonic solution branch by the normal shock rela-
tions: 1if the supersonic mixed flow experiences a normal shock,
the conditions would be the same as the conditions on the subsonic

solution branch at the same value of MS.

At the higher values of B the mixed flow becomes choked,
i.e., the mixed flow Mach number is one. This choking eliminates
a section of the curve as indicated on the bypass ratios of five
and ten. The region over which the solutions do not exist are
referred to by Hoge3 as the forbidden region. We have indicated

the boundaries of the forbidden region on Figure 2.

Hoge3 also showed that the control volume eguations developed

for an ejector could be solved over the entire region of the

M; - M; plane. The parameter M* (the ratio of velocity to the
speed of sound at Mach one) was chosen in place of the Mach number
since a finite range of the parameter M* covers all Mach numbers
from zero to infinity. An efficiency map for a pressure ratio

of six, temperature ratio of 3.7, and a bypass ratio of 10 is
shown on Figure 3. On Figure 3 the forbidden region becomes egg-
shaped, as shown cross-hatched. 1In calculating the data for
Figure 2, it was assumed that the inlet static pressures of the

primary, Plp' and secondary, P, , were equal. In Figurc 3 we

1s

) * _ v . -
show the curve in the Mp Ms plane for which plp Pls' After
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Supersonic Branch Efficiency Map. Also Shown
is the Curve for wihich P, _= . The Curve 1is
a Design Curve Because the~?hf§ical Size of the
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proper adjustments for changing Mg to MS we could take data from

N
.?}: Figure 3 along the curve plp::pls and plot the corresponding

N curve for g = 10 on Figure 2.
e The shape of the forbidden region is independent of the
?;; pressure ratio and depends only on the value of the bypass ratio
~3f: and the temperature ratio. Hoge3 gives the equation for the

')' boundaries of the forbidden region as .
= (ME+1/ME) + 8 (ME+1/M7) /YTR = 2/(1+8) (1+B/TR)". (1)
N
;{i. It is interesting to note that for either the primary or the
L secondary flow that if M* satisfies Equation (1), then so does
i%ﬁ the value of M* equal to the reciprocal of the first value. Also,
;:i; the curve for which Plp:=PlS can be obtained from the isentropic
20 relations which yield

B - 1 _('Y_l -
* Y+ - Y Y+l - * 2

Mg y=1 - PR <Y_—l M} > . (2)

] The simulataneous solution of Equations (1) and (2) yields the
{ pair of points where the curve P1p==Pls intersects the boundaries
Qij of the forbidden region. These results will be used in Section 5.
e At this time, however, we wish to consider Figure 2 and 3
:ﬁ: further. The very high values of efficiency located at the low

: subsonic values of Ms for all of the bypass ratios would provide
'_-.'
-ﬂ? excellent values of thrust augmentation if they could be achieved
"" v k3 . .
e in an ejector. However, Figure 2 raises serious doubts that this
?ﬁ: could happen in an ejector. For example, the data of Figure 2
‘\: indicate that at a Mach number of MS = 0.51 the efficiency at
v‘_-

v %
A

a bypass ratio of 10 is about 0.9 which is higher than the effi-

l‘ L]
[
WA

ciency (at the same MS) associated with any other value of R

indicated on Figure 2. Even though the value of efficiency of 0.9

S S |
s does not violate the second law (since it is less than one) it is *
“13' highly unlikely that such a result could be achieved in an ejector.
AN
igﬁ, It was considerations such as these that led us to consider
“:ﬁ the ccntrol volume solution in more detail in reference 7. It
ASRY
%
AR
Nl
s~
a e 6
%!
ey
<.
pRGAY

(Y

<.,

.

B

S P T YR I PRI T ] AT I e T T L L T S S s e e P T S S .

" RN O NN o o MO S USSP | AT R ST R NN RSTALY RN
’ ! ‘ 1 LR ST L R JRE R YR PR R AR R




rrﬂ*.'r.‘:‘ A B b ae SACAA of ai et G aad tud At Taf AL AL A ARSI IR SN SIS S RSSO A -]l
war concludead that a b ohionug i o cn i S G ohe T U S an
Iin Figure | was O sulticiont o il iiomn 1o ot g tie aet o

equations uscd in the analwvsis, (0 was 0ot o neceasary condioion.,
Thus, some of the solutions generatod fron thee conat tons riant

not be valid solutions for an ¢ cctor. On the other hand, ail

e of the solutions valid for an c¢jector woula b obtalineua from the
: solutions to the equations.

X Thus, some other criteria would be required to sort out

. those solutions that are valid in an ejector. Such criteria are

discussed further in the next scection.
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SECTION 3

INLET CONDITIONS

T The curves ot Figures 2 and 3 should be considered desiqn
;;_ curves since the physical size of the various ejector arecas (and
ju: area ratios) would have to change to obtain the performance indi-
% cated at various points on the curves. However, once an ejectcr

design is selected its operation will be determined by the boundary

o conditions imposed on the ejector.

= In addition to the primary and secondary total pressures

' and total temperatures, the back pressure (see Figure 1) must also
be known to determine the ejector operation. At any valie of MS
the design is the same for a point on the supersonic or subsonic
o branch. Thus, if the back pressure is set at a value egial to

the mixed-flow, static pressure on the subsonic branch, taen the
ejector would operate at that design point and P

- 1p
) to Pls’ This follows since the exit flow is subsonic.

would be equal

A whole series of values of MS could be achieved ia the

e ejector on the subsonic branch by adjusting the back pressure.
L
:& On the supersonic branch this is not the case. If the back
;E pressure is reduced sufficiently, the ejector will make 2 trans-
. ition to the supersonic solution branch and the operation becomes
- independent of further reductions in pressure. Thus, there is
):; only one operating point that the ejector will achieve on the
E% supersonic branch. This operating point can be determined by the
Lo methods described by Fabri and Siestrunckz. We have developed
e eguations based on their approach in reference 7 and these cquations
§§ are also presented in Appendix A.
;ﬁ In reference 7, using the Fabri and Siestrunck approach, we
ah 4] calculated the data presented in Figure 4 for a temperature ratio -
Ef of 3.7 and the other conditions shown on the figure. We chose
:é: various area ratios and plotted the efficiency versus the mass
;f flow ratio achieved at various pressure ratios. Each curve
e
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terininates at the point where the value of LroTirst reaches Mach
Pl

one. The points are indicated by the hack marks on Figurce 4
along each area ratio curve. It is clear from Figure 4 that the
maximum efficiency 1s achieved for a given mass flow ratio witn
the smallest diameter tube operating at a value of Mg nearly

equal to one.

These results were achieved for an ejector that operates
at a value of Msiil' However, from Figure 2 we see that for all
of the data shown that the efficiency at M, o= i, on a curve for
a given bypass ratio, is higher than at any supersonic values of
MS. However, as shown on Figure 5, this result does not hold
for all temperature ratios. At the low temperature ratios (e.g.,
1.0 and 1.5) there is an increase in efficiency at higher values
of MS. Since most of our applications are concerned with tem-
perature ratios higher than two, we will not consider the in-
creased efficiencies resulting from operation at values of

MS >1 at the lower temperature ratios.

In Table 1 we present a computer printout of the supersonic
branch solution for a pressure ratio of six, temperature ratio
of 3.7, and a bypass ratio of four. The first column contains
the secondary Mach number Mg which is taken as the independent

variable. The second column is PlS/PO (because of lack of space,

S
it 1is labeled (Pls) and the third column is the temperature ratio
Tls/Tos' Each of these values 1is obtained from MS using isen-

tropic relations. The exit area of the primary nozzle is chosen
to match the pressure of the primary to the secondary. This

sets the value of the primary Mach number, Mp (located in column
10), and enables one to find Tlp/To

and Pl /P (located in
p° op
columns 11 arnd 12).

P

Column four gives the ratio of the primary velocity to the

secondary velocity VO/VS and column five gives the ratio of the
r

nixea velocity to the secondary velocity.

Column six gives the mixed flow Mach number. Column scven

1s the pressure ratio Pm/POS and column eight is the temperaturc

10
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TABLE 1 >
SUPHRSONIC BRANCH SOLUTION i
. = A
TONSTANT MA3S FLOW {
CONSTANT AREA  SUPERSONIC E
" TRIMARY VAPOR AIR  SECONDARY GAS AIR 3
N PR= 4 000 TR= 3 700 CP=! 400 GS=! 400 WR= ! 00 WP- 29 {0 WEe 210 (¢ 3
= EY-PASS RATIO= 4 00 :
- bl P18, TISS  YP/VS VM/VS M PN; TM/ O GM MP  TIPITOS PIP/PIP A/AS AZAP*  ESPOC EQM/  IEAVL  §E
¢$09  VIOLATION OF 2ND LAV REQUIRES NEGATIVE TEMPERATURES
1000  VIOLATION OF 2ND LAY REGUIRE3 NECATIVE TEMPERATURES

3 {

0 ¢

3 iS00 VIOQLATION OF IND LAV: REGUIRES NECATIVE TEMPERATURES

0 2230  VIOLATION QF IND LAV 2:0Ui2t3 NECATIVE TEMPERATURES

32330 VIQLATION CF 2ND LAW. REQUIRES NEGATIVE TEMPERATURES

€ 3000 VIOLATION GF 2ND LAV REQUIRES NEGATIVE TEMPERATURES

0 3500  VICLATION OF IND LAV FOR ADIABATIC SYSTEMS REQUIRES WORK INPUT AND COOLINC
0 4006  VIOLATION OF
¢

0

¢

¢

G

¢

IND LAV FOR ADIASATIC SYSTENS REGUIRES WOSK INPUT AND COOLING
4505 2 870 0 %61 5 149 4 5422 135 ¢ 69 0 737 i 409‘IIIH]»0 $76 0148 ‘EIHE”‘!II!!) P06 223 ¢ 886 95
S000 0 843 € 952 S 775 3 77 f 98¢ 9 2:0 0 841 i 400 TG 0 571 0 141 0098 1832 078 : % 5 709 § 388
SSGO 0 434 943 5 3117 3011749 0 292 0 956 1 400 1 96 0 SeS 0 136 0 164 17293 0 6t 1SS g §13 0 SiS
5000 0 784 0 933 4 923 1 758 1 575 0 352 1 029 1 400 1 99 €SSO 0 131 0 110 16 493 6. 52 1 44 0 560 O She
530 0 7S £ 922 € 609 1 409 1 443 © 41t i 088 { 400 2.0i 0 553 0 125 0 420 15,871 0 47 139 0 S31 G 42%
W00 2720 0Ol 4 339 11301 336 0 447§ 13S 1.40m‘l||!|.»o see 0120 (CuDCI ) 04 13 055 0 e
37950 0 o9 0 899 4 108 ;904 1 250 0 S201 173 1 400 TOF 0 539 6 115 T T35 15045 042 135 0 SE8 ¢ 4%e
3030 L eS6 0 287 3 909 L 719 i ;80 C SeS 1 205 : 400 110 0531 0 109 G 142 14791 0 42 1 34 0 506 { 680
D353 0 634 0 874 3 736 1 S69 1 125 0 608 1 229 1 €00 213 0524 0 104 0 148 14 625 0 41 134 0 SG4 8 6:1
D 6000 0591 0 Bei 2 SES 1 454 1 087 G 637 1.145 :,400(:;:;:)0 S16 0 099 4'ﬂ||§)@ﬂnlilp G 61 134 5 SN D b
09500 0 SS9 G 847 3452 1377 1 077 0 646 1250 1 400 TTT0 0.504 0 093 51 TCYT2 042 134 0 S04 3 46
10000 B S28 0 833 3334 1 336 1 094 0 632 1 243 mo 499 0 088 @@ 0 82 5 36 0504 662
L3500 0 498 % A9 3228 1 314 1 127 0 608 1228 {400 TTF 0491 0 083 OTT2 ITTAY 0 41 134 0.502 © 463
1000 0 468 € 80S 3 35 12991 16§ 0 576 1 211 1 400 237 0 483 G 078 0 177 14 860 0 &1 i34 0501 0 46¢
L 1S00 0 440 0 791 3OS0 f 283 1 207 0 S4S 1 :93 1 460 236 0 474 0 073 0 182 15 00% 0 41 131 0 495 Q (47
12000 0412 077 1974 1 2601 249 G 51311741 406 240 0 465 0 065 D 186 15 253 0 40 i 33 © 497 Q &7
2600 0 386 0 767 2906 1 272 1 291 0 483 L 155 L 400 2 44 0 457 0 Q64 D 191 15§52 0 40 1 32§ 494 &7
13000 0 360 0 747 2 B4G L 265 1 334 0 453 1 126 1400 248 0 448 D 060 0 195 1S R9E 0 3% 5 32 [ 491 0 479
DISE0 3 237 0 733 2787 1 259 1277 0 425 % 117 1 400 253 G 439 G 056 0 i99 6291 029 131 ¢ 487 0 &84
4000 0316 0 718 2735 1 2541 620 0 398 1 097 : 400 157 3 63 0 05 0 203 16 73 0 38 i 30 0 483 0 489
L4530 0293 0 704 2 688 1 249 1 463 0 377 1 079 1 400 262 0422 0 Q49 0 106 17217 0 37 1.29 0 478 4 ¢9%
15060 0 277 0 490 2 645 244 1 SOS 0 348 1 060 1 400 2 66 0 413 0 045 0 210 17 751 0 36 129 0473 0 70
CEE0) 2153 0 675 2 665 i 240 1 S48 0 325 1 041 { 400 270 0 405 0 042 0 213 i8.33¢ 035 128 46f ¢ 709
DAY 0 235 D 661 2 Se8 236 1SS0 0 203 1 023 1 4G0 276 ¢ 3% 0 Q39 0 216 18 967 D 34 127 0 4l D 75t
S0 0 218 0 647 2534 L 2321 532 0 262 1 005 1 400 2 81 Q 288 & G364 0 219 9 650 033 125 0 456 0 724
7030 § 293 0 K34 2563 1 239 676 0 263 0 987 1 400 1 86 © 360 C 64 ¢ 271 20 386 0 32 125 0450 € 73
17500 0 188 0 620 2474 1 2261 716 0 2450 969 1 400 291 0 372 0 031 8224 11 176 831 .24 0 444 g 742
18006 0 76 0 667 2 447 1 233 1 757 0 ZiB 0 952 1 4C0 1 96 0 364 0 629 & 237 22021 029 23 0 437 0 7%
18500 0 1a: 0 S94 2422 1 223 0 799 0 312 0 935 1 402 3 ot 0 356 8 027 3 219 22926 028 131 & 430 0 740 )
D P000 0 6% 0 S8 D 299 ; Zia L 843 3 197 0 18 i 400 5 e 0 M8 0 IS Lo 23 89% Loz 1 if 2421 © 770
1900 0 134 5 S8 2377 1 2i€ 1 SE0 % 83 0902 £ 400 3 o1i 0 340 3 023 G 237 26917 215 119 ¢ 414 @ 782
26000 9 tIf 0 SSe 33t 12331 921 11700 86 1 4C0 3 16 0323 6 61 5 L3S De 208 f 26 ¢ i 0 4de ¢ 79
TOSOC G119 0 S41 2337 ¢ oiiioo 951 C S8 0 870 1 400 327 0 326 5 030 4237 27 168 013 16 2 298 0 80:
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ratio Tm/TO The gamma value of the mixture is aiven in column

nine which would vary if two different specics were boeing used,

Column thirteen gives the area ratio Ap/As required to
match the inlet pressures and column fourteen gives tne value
of A/Ag. The last four columns give the two efficiencies, total
pressure, and the entropy increase. The efficiency based on

availability, labeled ERAVL, 1is plotted on Figure 2.

The Fabri conditions cannot be directly applied to the
solution given in Table 1 since the geometry changes at each
point. However, if we select designs (i.e., fix the geometry)
from those presented in Table 1 we can then apply the inlet
criteria to determine the ejector operating point for each of
the selected designs. We have marked four such selections in
Table 1 at values of MS < 1.

Each of these four selections was used to generate an
operating characteristic., These solutions, for the supersonic
branch, are presented in Tables 2, 3, 4, and 5. The occurrence
of the design points is indicated in each of the tables. These
tables are basically different from Table 1 since they are for
an ejector of given geometry which is presented at the top of
each table. The columns referring to the primary conditions
and to area ratios have been removed and replaced by the mass
flow ratio of primary to secondary flow which is labeled M.P/M.S
(the reciprocal of the bypass ratio).

Following the procedures that we developed in reference 7
for applying the Fabri and Siestrunck inlet conditions (the
equations are given in Appendix A) we constructed the graphs
presented in Figure 6 for each of the four designs. Figure 6
presents the total pressure ratio required to operate at the
indicated value of M - Thus, the intersection of each of the
curves with the pressure ratio of six gives the value of M, at
which the particular ejector would operate. Only the design
labeled "4" operates at the chosen design value of M which was
MS==1. One can prove (see Appendix B) that the inlet conditions

always allow for operation at MS==1 and Plpz:pls'
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s TABLE 2
A
D CAsE 1
A
TN
N ZINETANT GEOMETRY
— CONSTANT AREA. SUPIRSON:C
S PRIMARY VAPOR AIR  SECONDARY CA3 AIR |
o PR- 4 000 TR= 3 700 GP=1 400 GS=: 400 WR- : 00 WP- 3° 0 WS: 29 §f
S AAPT: 19 651 AP/APY- 1 S80 AP'AS: 9 87 '
- MP- i 97 TIPITOPz0 §57¢ PIP/POS={ idS
B v: PLI TIE VPAVS VMV MM pM/ ™/ M MgjMP EFP0S  POMI  EFAVL R ‘
sy 30589 VICLATION OF IND AV BEQUIRES NECATIVE TEMPERATURES
S 13 VIGLATIIN OF IND LAV REGUIRES NEGATIVE TEMPERATURES
- ¢ 1€2%  VIOLATICN OF IND LAV  RIQUIRES NEGATIVE TEIMPERATURES
S ¢ 2030 CIDLATION OF IND LAW REQUIRES NEGATIVE TEMPERATURES
2 0 2306  VIOLATION OF 2ND LAV REQUIRES NEGATIVE TEMPERATURES
¢ 3800 VIGLATION OF IND LAV FOR AD:ABATIC SYSTEMS REGUIRES WORK INPUT AND COOLINC
- 73500 VIOLATICN CF IND LAV FOR AGIABATIC SYSTEMS REQUIRES WORK INPUT AND COOLING
S 4 4500  VIOLATION OF IND LAV fOR ADIABATIC SYSTEMS REQUIRES WORK INPUT AND _CQOLINC
e 24500 0 OB70 D %A 4 351 4 583 2335 £ 149 0 737 1 400 q'lii.) 10§ D230 g 2 ISl
S ¢SHE0 0 843 0 952 9792 3 7%0 1 400 0 224 0 837 1400 4324 380t 7L 0 Y352
P 2S00 0 BIG 0 %43 S 44 3152 1 761 B 2BC 0 T4 L 4QC 4 erT {63 6 081l 42
' 6330 F 764 0 93 4 835 1 87 1§78 0 338 0 974 1460 4 876 0§21 389 0S4t 7§21
T 4500 D 753 0 %22 4 489 2 319 ! 430 0 397 1 024 1 400 S 102 G 4T 1317 0 4% 0 550
§ 7000 8710 0911 4194 2017 1305 €457 1 Q66 {400 S 194 1 4L 1276 0 448 0 569
BO7SGE 0 48° L B9S2 941 1 7¢0 L 190 0 523 1 10S 1 400 S 4S54 0 3° 125G 0 457 6 565
¢ 800C 3 454 1 887 3 720 1500 1 OS1 0 €18 : IST L 400 S S81 ¢ 3B 1 243 G 445 3 Sl
¢ 8500 IMACINARY SOLUTION
¢ 2000  IMAGINARY SOLUTION
D 9500 IMAGINARY SOLUTION

. 10080 IMAGINARY 3GLUTION
‘-ﬂF- 13530 TMAGINARY SCLUTIONM
N $1CIC TMAGINARY SCLUTION

L DolS00 IMAGINARY SQLUTIONM
1 1 2300 IMAGINARY SGLUTION
D800 TMAGINARY SQIUTION
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’-.‘-‘ .

g CASE 2

o JINSTANT CEOMETRY
— CONSTANT ACA. SUPERSONT

PRIMARY VAPOR AIR  SECONDARY GAS AIR
PR= ¢ 000 TR~ 3 708 GF-! 400 GS-=! 400 WR= ¢ Q0 WF: 7° 00 WS- 1§ 70
AIAPY- 19 399 AP/AR*= @ 745 AP/AS: Q118

MP= 2 04 TIPiTOP-=0 54e PiP/B(CS=¢ il
ME 138 Tig yrivg YMIvE MK My ™ GM MSIMP LTPGS  POMd EFAVL SR
VIOLATION OF IND LAW REQUIRES NECATIVE TEMPERATURES
VIOLATION CF IND LAV REQUIRES NECATIVE TEMPERATURES
1§90 VIOLATION OF IND LAV REGUIRES NECATIVE TEMPERATURES
2600 VIOLATION CF IND LAV REQUIRES NECATIVE TEMPERATVRES

5 e
e
& TN
o o
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D o © ¢ T or
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wn
&
£=Y

VIGLATION OF IND LAV REQUIRES NECATIVE TEMPERATURES
000 VIOLATION OF IND LAV FOR ADIAEATIC SYSTEMS REQGUIRES WORK INPUT AND COGLING
3500 VICLATION OF IND LAV FOR ADIAIATIC SYSTEMS REQUIRES VORK INPUT AND COOLING
0 4000 VIOLATION OF ZND LAV FOR ADIABATIC SYSTEMS REQUIRES WORK INPUT AND COOLING
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10 1.92 19.653 0.087

2.04 15.399 0.128

2.17 14.534 0.155
. 2.24 14.552 0.166
8 b
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MS

Total Pressure Ratio Required to Operate at the

Indicated Value of M
The Intersection wit

for Each of the Four Designs.
the Pressure Ratio of Six

Yields the Actual Operating Point at the Design

Pressure Ratio.
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We have plotted the results of our study on Figure 7 where we

show the supersonic branch solution for the bypass ratio of four
where Plp = PlS (solid line, data fror Table 1) and the four
operating characteristic curves (dashed lines with data from
Tables 2, 3, 4 and 5) with their actual operating points indicated
as determined from Figure 6. Thus, we see that an ejector cannot
operate on the supersonic solution branch when MS< 1 and the mass

flow is given and P = Pls' Designs chosen from this branch

1p
actually operate at efficiencies lower than the design value

and lower than the value of efficiency at M = 1.

In general, the design curves for which the bypass ratio
1s given and the value of Plp = Pls are valid in the supersonic
solution branch only for values of Ms_zl. The curves of the sub-
sonic solution branch are valid over the entire range of Ms'

As discussed in Appendix C an isolated point may exist on the
supersonic solution branch for which Plp = Pls and Ms‘<l. Indi-
cations are that this point occurs in the flat region (e.q.,
from Ms = 0.8 to 1 in Table 1) or dips below the efficiency at
Ms = 1. The value of efficiency at Ms = 1 has always been the
highest efficiency obtainable if Msjil for a given mass flow.

In the rest of our studies we used the value of efficiency
at M_ = 1l as representative of the maximum efficiency achievable

for the given mass flow and Ms_il.

If the value of M = 1 lies within the forbidden region,
we then used the value of MS (less than one) found from simul-
taneous solution of Equations (1) and (2) in the studies presented

in Section 5.
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SECTION 4
IDEAL THRUST AUGMENTATION OF AN EJECTOR
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In order to assess the potential of ejectors used for thrust

augmentation we have made the following assumptions:

(1) For a given bypass ratio, the efficiency on the
supersonic solution branch of an ejector at
MS==1 and Plpzzpls 1s representative of the
maximum efficiency achievable at that bypass

ratio;

(2) Inlets, nozzles, and diffusers are ideal and

operate at 100 percent efficiency.

As explained in the last section, if we restrict operation
of an ejector to subsonic inlet Mach numbers (Ms_il) then the
value of efficiency at Ms==1 is a maximum (or very close to it)

when the inlet restriction is considered (see Figures 4 and 7).

If supersonic secondary inlet Mach numbers are considered,
then at low temperature ratios, higher efficiencies can be
achieved at supersonic, secondary, inlet Mach numbers (e.g., see

Figure 5).

These efficiencies, however, are not sufficiently higher

ng: to make a major change in the results.

b The equations for thrust augmentation using ideal conditions
were developed in reference 7 and are given in Appendix A.
Figure 8 presents thrust augmentation for a pressure ratio of

,ig six, temperature ratio of 3.7, and four bypass ratios (0.5, 1,

.\ L)

- 2, and 4) as a function of flight Mach number M_. The thrust
-{_..' [o°]

:;; augmentation is good at high and low values of the flight Mach

o« ) number, but in the range of 0.7 to 1.1 it is low or even less

than one for all four bypass ratios.

Figure 9 presents similar curves for a pressure ratio

of three and a temperature ratio of two. Again the thrust

»
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e,
?ﬁﬁ augmentation is good at low and high Mach numbers but poor in
-n; the range of Mach numbers from 0.9 to 1.5.
;: Figures 10 through 14 present the effects of temperature
ifj ratio on thrust augmentation, ¢, for five pressure ratios: two,
'gf three, four, five, and six.
¢:5 . Figures 10 through 12 are for a bypass ratio of 0.5 and
;,% Figures 13 and 14 are for a bypass ratio of two. On each of the
Eji five figures the flight Mach number is the curve parameter.
'y
i; Examination of the figures indicates only a weak dependence
{ > of & on pressure ratio. The dependence of ¢ on temperature is
SN reversed as we change from subsonic to supersonic flight Mach
ﬁ?j number. It also becomes obvious from these figures that the
:?? thrust augmentation in the neighborhood of Mach one is small or
'ﬂ;. less than one for all pressure ratios, temperature ratios, and
ﬁi: bypass ratios.
iﬁ: The low temperature end of the curves could be improved
E&E slightly by operating the ejector at supersonic values of Ms'
{ It is doubtful, however, that this effect would raise the low-
Eﬁ: temperature-ratio end of the curves above one for supersonic
flight Mach numbers, M_.
{ﬁé At supersonic flight Mach numbers the thrust augmentation
;n is more like a ram jet effect than an ejector effect since it
;Es depends so strongly on the energy transfer due to the high tem-
:ﬁ% perature of the primary gas.
j% In the next section we will examine the thrust augmentation
;T: of an ejector when operating with a hypothetical engine.
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Figure 10. Effect of Temperature Ratio at a Pressure

Ratio of Two and a Bypass Ratio of 0.5.
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Figure 12. Effect of Temperature Ratio at a Pressure
Ratio of Four and a Bypass Ratio of 0.5.
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SECTION 5
AN EJECTOR ENGINE COMBINATION

The performance of an ejector when coupled to a jet engine
was studied for hypothetical engines over a range of flight Mach
numbers and altitudes. Hypothetical engines with pressure ratios
ranging from 5 to 40 were investigated for two turbine inlet
temperatures: 2500°F and 3000°F. We investigated cycles with
ideal processes as well as those with nonideal processes. Figure

15 shows a sketch of a T-s diagram for an engine with losses.

The process from 1 to 2 involves ram compression which is
isentropic in the ideal case, or according to MIL-E-5007D as

quoted in reference 9:

22 -1 M, =0 tol.0 (3)
01

Po2 1.35

22 - 1.0 - 0.076(M -1)7"3° M_>1.0 to 5. (4)

The compression process from 2 to 3 was assumed to be adiabatic

with a polytropic efficiency of 1 in the ideal case, and 0.85

in the nonideal case. The rpm of the engine was assumed to vary
with flight Mach number so that the pressure ratio remained con-

stant (i.e., a constant specific speed was assumed).

In the combustor, process 3 to 4, the temperature was
assumed to be raised to the maximum allowable turbine inlet tem-
perature with no loss in total pressure in the ideal case or a

5 percent loss in total pressure in the nonideal case.

In the turbine the gas expands in process 4 and 5 and
supplies the work required to drive the comgressor. No account was

taken for work supplied to accessories and C_ and y wer- assumed

p
constant and equal to those of air. The polytropic efficiency

was set to 1 for the ideal case and to 0.85 for the nonideal case.
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Sketch of T-s Diagram for a Hypothetical Engine.
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The process from 5 to 6 represents the adiabatic expansion
to ambient pressure in tine nozzle with a polytropic efficiency of
1.0 in the ideal case and 0.98 in the nonidcealized case.  The thrust
per unit of mass flow of the enginc is calculated as a function

of the flight Mach number from the change in momentum.

Figures 16 and 17 show the primary engine thrust per unit
of mass flow at two altitudes as a function of the flight Mach
number for engincs with a compressor pressure ratio, Pe, of 5 and
35, and turbine inlet temperatures, T4, of 2500°R and 3500°R.

The low pressure ratio engine can, of course, achieve higher
Mach numbers than the hich pressure ratio engine before its
thrust fall off to zero because of the high temperature limit.
At each flight Mach number the pressure ratio, PR, can be deter-
mined (PR=P5/P2); and the temperature ratio, TR, can be determined
(TR=TS/T2). The performance of an ejector for the values of PR
and TR can then be calculated at MS==l and various bypass ratios.
If the ejector is choked, the ejector performance is calculated

on the boundary of the forbidden region for that bypass ratio.

Once the total pressure and temperature of the mixed flow
is known, the thrust per unit mass of the mixed flow can readily
be calculated assuming an adiabatic expansion to ambient pressure.
A polytropic efficiency of 1.0 was assumed in the ideal case,
and 0.98 in the nonideal case. The thrust per unit mass flow
can be determined from the momentum change and the thrust augmen-

tation, ¢, calculated from the following equation:

¢ = (L+8)(t /m)/(t /m). (5)

The calculations were terminated when the pressure ratio, PR,

dropped below onc. .

In addition to thrust augmentation of an ejector, we also

calculated the performance of a mixing-fan jet engine. Using the

same polytropic efficiencies as for the engine alone, we determined

l
3 £ a common pressure at the exits of the turbine and fan which matched
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the work

the work produced by the turbine.

this pressure at low velocity;

.....

required by the fan (at a particular bypass ratio)

CHAASMA S YL AL SR D SRR AR

and
The two flows are then mixed at

the common pressure is then the

A Sl S AN b

stagnation pressure of the mixture.

Since the exit temperatures

from the fan and turbine are also known,

the mixed total temperature

can be evaluated and the final state of the mixed gas is known.
Thus, the thrust per unit mass can be calculated and the thrust

augmentation determined from Equation (5).

A substantial amount of. data were obtained from this study
and Table 6 details the various conditions used to present
Figures 18 through 29. As indicated in Table 6, Figures 18 through
21 present results for the ideal case for compressor pressure
ratio of 35. As with the previous study in the neighborhood of
Mach one the thrust augmentation is near one or less than one
for the ejector. However, for the high pressure ratio engine it
remains low even in the supersonic region, although it does
On the other hand, the thrust

augmentation for the ejector is substantial at low subsonic Mach

slightly exceed one in that region.

numbers on all the figures, even after taking account for losses.

The mixing fan shows substantial thrust augmentation through-
out the entire Mach number range even after reasonable component
efficiencies are assumed on the later

29.

figures; Figures 22 through
If we consider the low pressure ratio engine in the non-
ideal case, Figures 26 through 29, we see that the ejector again
shows a thrust augmentation at the supersonic Mach numbers. Again
this is the result of an action more like a ram jet since it
results from the energy transfer which results from the temperature

difference between the primary and secondary.

. Generally mass flow entrainment in ejectors would be very
large (i.e., of the order of 10 or more). If one considers a

mixing fan with similar flow rates being pumpted into the system,

then the size of the engine will make integration with airframe

a very difficult problem. On the other hand, distributing the

engine air and entraining the outside air in large volumes will
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not present insurmountable problems for integration. Ejectors
therefore are attractive devices from the point of view of
simplicity and integrability.

Curves such as the ones in Figures 18 to 29 must be viewed

in the light of the comments made above. Otherwise, it might

deter consideration of ejectors.
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- TABLE 6
o THRUST AUGMENTATION DATA ARE PRESENTED FOR THE
oy FOLLOWING COMBINATIONS OF FIGURES 18 to 29
o : [
S . Compressor Turbine Inlet .
N Figure Altitude !
~ Pressure Temperature . n=n_=n_1
Number Ratio, Pe °oR (kilofeet) t c l
.: . j
3 18 35 2500 :
Y i
o 19 35 3000 ;
o 20 35 2500 30 1 ;
% 21 ; 35 3000 30 1 !
' 22 ; 35 2500 0 0.85
- 23 ' 35 3000 0 0.85 |
o
- 24 35 2500 30 0.85
. d
25 35 3000 30 0.85
R 26 5 2500 0 0.85
b 27 5 3000 0 0.85 |
2 28 5 2500 30 0.85
o 29 5 3000 30 0.85
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SECTION 6
CONCLUSIONS FROM THE EJECTOR STUDY

Based on the results of the studies presented in the previous
sections for constant area ejectors, we have drawn the following

conclusions:

(1) In general, on the supersonic branch v the iosioarn
curves constructed for a given bypass ratio ana
curves cannot be realized in an ejector of valucs @ 0V

Figure 7).

(2) In general, these curves, therefore,

for values of MS:>1 on the supersonic solutior ...

{3) 1Isolated points on the supersonic =o' .
be achieved at values of M, <1 but the cfficicenc:

may not exceed the value of efficiency at Mgr-l [see Al
for an example).

(4) The value of the efficiency at MS: 1 on the sapersonio
branch is representative of the maximum efficiency 1f not the

actual maximum efficiency (see Figures 4, 7, and 2).

(5) At lower temperature ratios the efficiency on the
supersonic solution branch may be higher at values of MS>>1 than
at Ms==l (see Figure 5). However, conclusion (4) is still valid
since these higher efficiencies are probably not high enough to

make a significant difference in the overall conclusions,

(6) All of the thrust augmentation studies presented herein

indicated little or no thrust augmentation at flight Mach numbers
near one.

(7) The basic study of thrust augmentation shows a reversal
of the effect of temperature at subsonic and supersonic flight
Mach numbers: at subsonic flight Mach numbers, increases in tem-
perature reduce thrust augmentation while at supersonic flight
Mach numbers, increases in temperature result in increases in
thrust augmentation ratio (see Figures 10 through 14}).
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(8) Pressure ratio has only a very small effect on thrust

augmentation ratio (see Figures 10 through 12 and 13 to 14).

(9) Thrust augmentation ratios at low subsonic flight

Mach numbers were substantial for all cases studied.

(10) Thrust augmentation levels at supersonic flight Mach
numbers were adequate for the low pressure ratio engine cycle,

but less than one for the high pressure ratio cycle.

(11) As expected, mixing-fan thrust augmentation was superior
to the ejector for the same bypass ratio and flight Mach numbers
(see Figures 18 through 29). This superior performance is achieved

at the cost of complex rotating machinery and total weight.

(12) The thrust augmentation of the mixing-fan also fell off
substantially with increasing flight Mach numbers.

Since no analytical technique was found that could determine
the maximum efficiency of an ejector, it was necessary to base
our results on a numerical study of an ejector. The Fabri and
Siestrunck inlet condition enabled us to determine a reasonable
representation of the maximum efficiency that would be obtained
for a wide range of parameters. Even though we know of some cases
where higher efficiencies could be achieved (low temperature
ratios and M >1) we do not believe that an actual ejector (with
wall friction for example) could achieve efficiencies higher than
those that we used. Thus, we believe that our results give
reasonable estimates of the upper limits to performance that one

can expect from an ejector over the range of parameters studied.

Conclusion (6) states that the thrust augmentation ratio of
"constant area ejectors" is less than one at a flight Mach number
around one. Therefore, this type of thrust augmenting ejector
cannot be considered as a potential substitute for a turbo fan
in a propulsion system for transonic aircraft. This raises two
questions: (1) is thrust augmentation less than one near a Mach
number of one an inherent characteristic of all types of thrust

augmenting ejectors, and more broadly, of any type of momentum
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exchange process not employing rotating machinery? And, (2) can
ejector techniques in view of the limitation ncar Mach one be of

any use for aircraft applications?

We feel that many useful applications of ejectors to air-
craft are still possible at low flight speeds and that there are
methods available to obtain thrust augmentation at Mach numbers

near one. Some of the application areas are as follows:
(1) ejectors for STOL and VSTOL;
(2) boundary layer ejector systems;
(3) new approaches to momentum exchange
e co-flowing
® cross flow
® counter flow.

Thrust augmenting ejectors for VSTOL and STOL have the
following advantages:

(1) high thrust augmentation capability of advanced compact
ejectors at take-off and low flight speeds;

(2) feasibility of a large variety of shapes for the ejector

shroud (from axisymmetrical to high aspect ratio slot configurations);

(3) resulting high performance capabilities and synergistic
effects of ejector and wing

e prevention of flow separation by wing-boundary

layer energization

® strong supercirculation; very high CL max’ imgroved
’
L/D

o favorable transition from "hover" to conventional
flight (as flight speed increases, the vertical
thrust component of the ejector decreases to a

lesser degree than the aerodynamic 1ift increases).

In the boundary layer ejector systems the trailing edge
region of the wing is configured as a very compact two-dimensional
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ejector, which uses only wing boundary layer air as secondary
ejector fluid medium. This results in performance characteristics

and synergistic effects as follows:

(1) thrust augmentation does not drop to zero at flight
Mach number around one and is extended into the supersonic flight

regime;

(2) drag reduction due to restoration of the wake to free

stream velocities;

(3) prevention of flow separation by boundary layer

energization;

(4) improved wing characteristic {(increased C and L/D);

L,max
(5) possibility of boundary layer control by suction (if
desired, the boundary layer ejector can be employed for a greatly

simplified flow laminarization system).

In order to capitalize on the potential that these systems
have, we recommend the following approach toward an ejector-

aircraft design:

(1) Determination of major performance and design (geometry)
parameters of two-dimensional ejectors under true environmental
conditions, including simulated wing-boundary layer air for

secondary fluid medium.

(2) Ejector-aircraft systems are major long-range projects
requiring team efforts which combine expertise in ejector-engine-
aircraft design.

However, before building an ejector-aircraft prototype,
lessons learned from past failures of ejector-aircraft must be

carefully avoided. This requires:

® a thorough comparison analysis of potential ejector

wing fuselage configurations

e functional development of all critical system components
and
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e performance verification under true environmental

conditions of these components.

In order to further our understandin§ of ejector processes
we also recommend that studies of co-flowing ejectors be made
using computational fluid dynamics (CFD). The code used by
Scott and Hankey10 to study the flow in combustors would be ideal
for this purpose. Fundamental understanding of the processes
could be greatly enhanced by such studies. 1In addition, studies
of ejectors not having a constant area can also be studied with ’

this code to determine the performance of such ejectors.

In addition to the more traditional approaches just dis-
cussed, we present some entirely new concepts in the next section.

These new concepts have the potential of providing improved

Sttt ket s

methods of transferring availability between fluid streams without

using moving parts.

destuedenbosiibil Sedacide




SECTION 7

NEW CONCEPTS AND RESEARCH APPROACHES IN THE FIELD
OF DIRECT ENERGY TRANSFER PROCESS

Processes of transferring energy from one working medium of
high energy content to one of lower energy content play a key role
in aeropropulsion and other technology areas. Usually, in these
processes, turbines and compressors are employed transferring the
energy from one working substance to another, except in the
so-called direct energy transfer processes. In these processes the
energy transfer is accomplished by direct contact of the inter-

acting media without the use of machinery.

Direct energy transfer processes have attracted a great
deal of interest because of their inherent structural simplicity,
low weight and cost, and high reliability; their problem, however,

is to achieve high energy transfer efficiencies.

Distinction can be made between two major classes of direct

energy transfer processes, namely:
® unsteady flow energy transfer processes
e steady flow energy transfer processes.

Examples for processes in which energy is transferred from one
fluid medium to another one by means of unsteady flow are:

® shock tubes
® pulse jets
® dynamic pressure exchangers

® non-steady flow ejectors (non-steady flow in either

primary or secondary flow or both).
Examples of stcecady flow direct energy transfer processes are:

® Continuous flow ejectors (for jet pumps, thrust augmen-

tors, and other applications).

The following discussion deals with steady flow direct

energy transfer processes, specifically with continuous flow
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ejector-type devices for various applications in the field of

thrust augmentation and pumps. Before discussing new approaches
and concepts which depart from conventional ejectors, it will be
most beneficial to briefly synopize the major characteristics of

current ejector processes:

(a) Current ejector processes are based on momentum
exchange between two mass-streams flowing in the ) |
same direction through a mixing duct (Figure 1).
In the following, such processes will be referred
to as "co-flowing momentum exchange processes."
The momentum exchange in these processes is
accomplished by mixing. The shape of the mixing
duct is not limited to simple geometries, i.e.,
straight, constant duct cross-section. The mixing
duct may be curved and its cross-section may vary
with length.

(b) At the onset of mixing, the two interacting media
have differences 1n one or more of the following

fluid flow parameters:

velocity
total and/or static pressure

total and/or static temperature

physical or chemical characteristics {(chemical

reactions during mixing will not be considered).

The medium having at the onset of mixing the greater
total pressure is called the "primary medium", the
medium having the lower total pressure is called the

"secondary medium.
(c) Within the mixing duct:

the total mass flow 1s conserved
in case of an adiabatic mixing process, the stagna-

tion enthalpy is conserved




»
A e

34
-
r e

.i e if the internal flow does not exert a force

[ component in the flow direction upon the inner
surface of the mixing duct, then the impulse 4

o~ functions at mixing duct entrance and exit are

. equal.

(d) In "co-flow" type ejectors, mass and momentum trans-
port are coupled by the transport velocity U(x,y) as

follows

Ve - s - s . <
PIP W Sug Y | e !

N e mass transport m = f p(x,y) * U(x,y) dA
area

Y3

. e momentum transport M = j{ p(x,y) U?(x,y) dA
area

where p(x,y) and U(x,y) are, respectively, the
mass density and transport velocity at a given

duct cross-section as a function of position

- (x,y).

- (e) Two major categories of loss mechanisms can be iden-
tified in current ejectors:

- ® intrinsic losses associated with the mixing
process

® parasitic drag losses.

The parasitic drag losses are due to skin friction
>, and possible flow separation at the inner surfaces
.. of the ejector shroud, which consists of inlet duct,
mixing duct and diffuser (a diffuser is "mployed if
necessary for matching mixing duct exit conditions

with environmental conditions).

The parasitic drag is not of a fundamental nature;

it can be strongly influenced by the design of the

A
ol

“

ejector shroud and method of primary injection.

LA

»
»
a

IMANAT P XA

For example, the parasitic drag can be reduced by
reducing the mixing duct length required for adequate

mixing. This can be made possible, for example,
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by employing a multiplicity of primary nozzles,

by hypermixing nozzle shapes, or by accepting a

certain degree of incomplete mixing.

The intrinsic losses associated with the mixing
process are of a more fundamental nature and depend
on the particular co-flow geometry chosen. For
obtaining an upper bound of ejector performance

and efficiency, the mixing losses can be determined
analytically without taking parasitic drag losses
into account. In flows where the total enthalpy

is conserved, the ejector performance is completely
determined by the total pressure after mixing,

when mass flows and total pressures and temperatures

of primary and secondary media are given.

The ratio of actual ejector performance to the
performance resulting from an idealized mixing

process having constant entropy for the svstem is

most conveniently given by the ratio of availabilities,
before and after mixing. We refer to this as the

availability efficiency (nav).

Another useful pseudo efficiency is the ratio of
actual ejector exiting kinetic power to the kinetic
power of the primary working medium expanding to

a pressure equal to the stagnation pressure of the
secondary working medium. This is called the kinetic

energy efficiency (nK).

Perhaps the most important characteristic of all
co-flowing ejectors is that the differences between
the flow parameters of the interacting working

media (as previously defined under "b") are greatest
at the beginning of the mixing process and decrease
through the process of mixing. At the end of the
mixing process (in the ideal case), the mixed flow

has a homogeneous gas composition, temperature,
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pressure, and velocity. The consequences of

this type of equilibration process are, two-fold,

namely:

® An intrinsic increase in system entropy (or
loss in availability) will occur during the
mixing process. This increase in system entropy
will be substantial, if at the onset of mixing
the differences between the flow parameters such
as temperature, pressure, velocity of the inter-

acting fluid media, are large.

® Only a fraction of the initial momentum of the
primary working medium can be transferred to the
secondary working medium, because the primary
and secondary working media are brought by
mixing to equal speed pressure and temperature

(vm, Pom' Tom’ respectively).

From the above synopsis it follows that major, intrinsic
performance shortcomings of current ejectors are a direct con-
sequence of the co-flowing momentum exchange process. In the
following, a discussion is given about momentum exchange processes
which depart from the co-flowing type.

7.1 FUNDAMENTAL RESEARCH AND NEW CONCEPTS IN THE FIELD OF
MOMENTUM EXCHANGE PROCESSES
Practically all research and development efforts on mixing
phenomena and ejectors have been conducted in the area of co-
flowing momentum exchange processes under shrouded and unshrouded
(free jet mixing) conditions. Basic research as well as devel-

opment work is needed on novel momentum exchange processes of the

. cross flow as well as the counter flow momentum exchange types.

;2 (These terms are chosen because of their close analogy to heat
:S exchange processes, which are categorized according to co-flow,
E:‘ cross flow, and counter flow types of heat exchange; the most
ot efficient heat transfer processes are of the counter flow type.)

’;.";.'_\‘_-.‘_\'_‘.;,-.'_-.‘i
- .I.l.!‘!.&.! .‘;L'
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- First, the counter flow momentum exchange process will be
g described. 1In one-dimensional flow, only co-flow momentum

- exchange processes are possible. However, in axisymmetrical or
g two~dimensional flow configurations both a co-flow and a counter
Q“d
fﬁ flow momentum exchange process can be realized, as illustrated
AN

4

in Figures 30 and 31, respectively. In Figure 31 the flow con-

'l( 'l.l“
. l"
.l e

s

[yt

ditions are similar to those in fluid flow machinery: the mass

L2
’

flow per second is determined by the axial flow component, the

\-\' « 3

t}j density, and the annular area, while the angular momentum per
f; second is determined by the tangential velocity component and
v.'! u,

the mass flow per second.

.
L4

Since the axial velocity component can be small in compar-
ison to the tangential velocity component, the primary and secondary
gas flows can have either the same or opposite axial flow Jdirections.
It is important to realize the inherent functional differences
resulting from these two possibilities; the latter allows for a

counter flow momentum exchanger.

In the co-flowing process the greatest differences in total
pressure exist at the onset of the mixing between the primary
and secondary fluid media. As a consequence, this mixing process
results in intrinsic losses or in an increase in total system
entropy. In contrast, in the counter flow mixing process the
secondary fluid medium comes first in contact with the primary
medium after the energy of the primary medium is attenuated.

As a consequence, the intrinsic mixing losses or system entropy
increase are greatly reduced (under ideal conditions they can
become zero).

In Figure 30 a cross flow concept is illustrated for a
two-dimensional configuration. In the schematic shown, a rotor

is used to establish vortices at a frequency corresponding to the

natural Strouhal number of about 0.3 for the configuration (other
configurations would not require a rotor). Eddies prcduced would ‘

exist for a longer duration before breaking into smaller scales.

Because of the curvature of the channel, the eddies flow across
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the primary flow and can be accelerated to higher velocities

with little exchange of thermal energy. (The primary and secondary
are in general at different total temperatures.) The primary and

secondary flows are separated at the exit.

Thus, we see that it is possible to describe momentum
exchangers that operate on counter flow and cross flow configura-
tions and permit, to some degree, the uncoupling of the thermal
energy transport from the momentum transport. Such devices may
have applications in many fields and could produce fundamental
information concerning mixing phenomena. Thus, we believe that a
research program should be established to investigate these con-

cepts in view of many promising Air Force applications that can be

envisioned.
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APPENDIX A
RELEVANT EJECTOR EQUATIONS

MIXING FORMULA
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(C2—C6)VI;+ (C3+C4 +C5) Vm-Cl =0

Vm = Vm/vls

m
m _ 1l+m —
= — W - <l_£_>v2
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W
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Pos W(l + AR) Tys Pos

The remaining Equations are for a single species (e.g, air-air)

y=1'

m T m P Y S
op s Y=-1 .., _< om> _ Jy-l 2
. -—E T +— (l + 2 Mco) P 2 Moo
m m_ "os m os
6 = 1 m m
m y-1'
p -—
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s APPENDIX B
'\'::-. THE INLET FLOW CONDITIONS ALWAYS ADMIT THE SOLUTION
3 OF P, =P ANDM_= 1.0
(g 1p os [S

.\.i:
':E In order to determine the value of Pos/Pop at a value of
:f M;==1, we can solve the second inlet condition equation given in
1% .

i . Appendix A for Pos/Pop'
e
LA

-:l:
= 1+ M* 1 + M*2

ep

‘ A% M* - M*
-'.- e

A os _ P P P . (B.1)
P Pop Ag «\2 [(Y+1 y-1 %2 L
= (l'Ms ) ( 2~ 2 Mg )Y’l
-\_-

I

Now from the first Equation of the inlet conditions we see
;i that if M;==l then M;p==M;. Thus, Equation B.l gives a 0/0 or

indeterminate form when M;==l. However, L'Hospital's Rule can
o be used to determine the value of M;==l. A double application
-l of L'Hospital's Rule is required. It results in:

% P A* M_-1 dam*

v os _ % B P ep . (B.2)
}g Pop Bs  mx2 g M* 2

N MX=1

L o

~ . .

:;* In order to evaluate Equation B.2 we must use the first of
Il

ta the inlet equations given in Appendix B:

N

a . 1 1

e - "y I A V-1
% - 1<Y+1_Y-1M*z> Y1= A __SM*(Y"‘]-_I:__I_M*Z Y
o ep 2 2 ep A¥  A* s\ 2 2 s
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&: After differentiating Equation B.3 twice we obtain:
,ﬂ
: 2k o2 X
o~ d"Mep _ o hs Mo y+1 _y-1 .» v-1
i 2 = 2 A% ° M* = 1 ¢ p) ) Mp . (B.4)
o a Mg P P
.\. Mg =1
!;
" Substitution of Equation B.4 into Equation B.2 results in
.. !
-1
P y+1 y-1 2> Y
- os - M¥* B.5
- — = ( 2 2 'p . (8-3)
i P
4 OP/Mq* = 1
._: S
'i Now
o Pis - Pis . Pop . Pos (B.6)
. - P P P .
{ P os op op
. OP/Mm* = 1
o s
<
3: Using Equation B.5 along with the well known isentropic
realtions yield
- P
- 1ls =1 . (B.7)
P
> 1p /% =
N Ms =1 .
‘{ Therefore, the inlet conditions always admit the solution ;
- * = =1« P = y i i ) 4
3 where Ms Ms 1; ls/Pop 1 ard the ratio POS/POp is determined i
" from Equation B.5. i
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APPENDIX C
AN EXAMPLE OF AN ISOLATED POINT ON THE
SUPERSONIC BRANCH WHERE Ms <1 AND P1p= Pls

As stated in the text an isolated point may exist on the

supersonic branch where MS<<1 and Plpzzpls' The investigation

. of the supersonic solution branch where MS<:1 showed that most

points could not be achieved in an ejector. However, one can
show, by an inverse procedure, that an isolated point may exist

where M <1 and P =P .
S 1p 1s

Table C.l presents the result of applying the Fabri and
Siestrunck inlet conditions to an ejector design where M* = 1,7
(Mp = 2.1555), Ap/Ag = 1.928 (Al in Table C.1), As/AE = 2.000
{(as in Table C.1l) and TR = 1.15. Note that A/A; = 2 + 1.928
= 3.928. Using the procedure described in reference 7, we found
pressure ratios, PR, required to achieve various values of M;
{MS in the table). The ratio of Plp/Pls is also listed in
Table 3.1 and we note that it achieves a value of 1 at M;==1 and
about at M; = 0.7 at which point the bypass ratio (MU in the table)
is 0.25848 and PR = 7.40451,

Thus, if we run the design program with the values of B,
PR, and TR indicated at M; = 0.7 (Ms = 0.6668) we should recover
this point and we know that it satisfies the Fabri and Siestrunck
inlet conditions.

The computer output for this "inverse" run is shown in
Table C.2. Indeed we see that at MS = 0.6668, Mp = 2.155 is
reasonable and A/A; = 3.928 is also reasonable. Thus, this
particular point on the curve can be achieved and the value of

the efficiency is about 0.883. Note, however, that this value

. of efficiency is less than the value at MS==l, where it is 0.890.
'f‘ The value of the efficiency at Ms==l is slightly less than the
_:j : values found at supersconic values of M, -
{
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'.": TABLE C-1
A
%S
A MPe- 1 750 Af- i 918 AS: 7 000 TR 1 1§52
e ME 1 3008 MPT: { 94504 AE/AP*- D 92735 (A-AE)/APt--0 0000 PR= 16 45680 MU= § 03000 OIP/PIS= { 8505
N “S- § 0500 MBI { 93420 AE/A®*: 3 77028 (A-AD)/AP*= 0 1876  PRe {7 44476  305- 2 §09¢e  9,Bi5. ¢ 78%:
- e 3 1000 MPI- 1 92287 AE/AP*s 3 31348 (A-AD)/AP= 0 3142 PR= 16 45120 MU= 0 02048 PLP/PISs [ 459
S+ 0 1500 MPE= 1 91072 AE/APt= 3 45905 (A-AE)(APA= § 4688  PRs 15 48250  Mu.  pi347  PiB/PiL. o 1728 *
0 MS. 0 2000 MPE- ! 89766 AE/AP= 3 30734 tA-AE)/APY= 0 6205  PRe (4 54320 MU= § 04576 PIP/PISs 1 4917
N MS. [ 2500 MPE- 1 BA430 AT/APU= 3 15952 (A-AD)IAPx © 7483  PRs {3 43740 MU- [ G4042  PIDIPiSe 1 464
g 3. 0 3000 MTE: | 87008 AE/AP= 3 01549 (A-AE)/AP?= § 9114  PR= (2 7¢860 MU= 0 07454  P{F/PiS: ! 2497
N MS- 0 3500 MPE- | 85514 AE/APA- 1 87915 (A-AE}AP= ! 0487  PRs ff 9393 MU= [ 99419  P{P/Pi:  18¢7
T ¥S- 3 4000 NPT 1 83992 AC/AP®- 2 74836 (A-AD)/AP®= | 1795  PR= i1 15240 MUs § 1i34] PIP/FIS= 1§ 2191
A ME- 0 4500 MPT= | 82418 AE/AP®= 2 63493 (A-AE}/APT: | 2029 PRs 10 41010 MY= 0 1327 PiPiPis- 1 177¢
e S- 3 §0%0 MPC- 1 80820 AL/AP®- 3 50543 (A-AE)/AF®= § 4162 PR= 9 7(39¢ MUs 0 13657 PIP/P1S: 1 1234
e ME: 0 SS00 MPE- i 79219 AL/APA= 7 40218 (A-AE}/APA: ¢ 5247  PRx 9 06450  MU: 0 18338 PIB/Pif= : 0892
e 32 Q €000 MPE- ! 77639 ALIAPM- 2 30621 fA-AE)IAPYs { 6116 PR= § 45391 MU= 9 20546  P{PIPiS: 1 8532
S 5= 0 K500 MPL= i 76112 AE/APt= 2 21935 (A-AD)/APt= ! 7985  BR: 7 91070 MU~ § 2341 PiPIPii. 4l
o 45- 3 910 MPL- i 74677 AEIAPT- 1 14309 (A-AE)/AP®= ! 7848 PR= 7 40450 MU= 0 25848 PiP/PiSe 1 3003
MS= 0 7500 MPE- I 73360 AE/APt:z ) 07789 (A-AE)/APR: | 8500 PR- & 94541 My: 2 18544 PIP/PiSs § 9874
o I- 0 0090 MPS= 1 72214 AE/AP= 2 02412 (A-AE)/AP?= | 9037 PR= & $3093 MU= 0 31259 PIP/PIS= 0 9718
X 5= 0 8500 MPT- 1 71274 AL/APA= { 95207 (A-AE)/APP= | 9458  DR= ¢ 14001 MU= 0 33874 P{P/Ei&. 0 877
o WI. g 3080 MDD | 70574 AE/APt= 1 95195 (A-AE)/ABt= | 9759  PR= 5 83324 MU= 9 26215 PIP/PIS= 0 971§
o 5= 0 9S00 MPE- | 70144 AL/APA= ¢ 93287 (A-AD)/AB®s { 9940  PRs 5 55356 MU= { 38503 DPiPi®if. 0 9g%:
“ S 1 0000 NPE- { 70000 AE/AP*= | 92786 (A-AE)/AP?®= 2 0000 PR= § 26906 MU= 0 40705 PiP/P1S= ! 0000
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TABLE C-2

SONSTANT MASS TLOV
CONSTANT ARER SUPERSONIZ
PRIMARY VAPOR- AIR  SECONDARY GAS AIR
PR- 7 403 TR= 1 190 GP=1 400 G5-1 400 WR- 1 00 WP= 2% 00 W8: 29 5!
BY-PASS RATIO-  £.258
NS PiS/  TIS!  VPIVS VM/IVS MM M/ ™! M MP  TIPITGS Pi2/PCP AP/AS A/AP»  EFPQE POM:  IRAVI G2

3 Il
sypr

G €508  VICLATION OF 2ND LAV REQUIRES NEGATIVE TEMPERATURES
* 0 1000  VIQLATION OF IND LAV REQUIRES NEGATIVE TEMPERATUREIS
#:- @ 1580 VIOLATION OF 2ND LAV: REQUIRES NEGATIVE TEMPERATURES
;}' 0 7009 VIDLATION OF 2ND LAV FOR ADIABATIC SYSTEMS REQUIRES WORK INPUT AND COOQLING
¢£‘ ¢ I300 VIGLATION OF 2ND LAV FOR ADIABATIC SYSTEMS:REQUIRES WCRK INPUT AND COOLING
f 0 3000 VIOLATION OF 2ND LAV FOR ADIABATIC SYSTEMS REQUIRES WCRK INPUT AND COOLING
N 0 560 VIOLATION OF 2ND LAV FOR ADIABATIC SYSTEMS REQUIRES WORK INPUT AND COOLING
; 0 4000 0 B9é D 949 4 09F 4 397 2 401 0 230 0 520 1.400 2 04 0 547 00120 L4 457 1 0D 4B (98
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:} 0 SS00 & 814 0 943 3 Q70 1 Q3% 2 Q9 0 431 0.S92 1400 2 10 0 332 AR B! ¢ 8i8 4071 &9 418 G993 i
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v 0 7000 0 721 @ $i1 2 502 2 3822031 0 493 0.613 3 400 217 0 Si¢ 0097 1083 3%ty § 93 47 C 8B O
\:' 0 7560 0 489 0 899 2 347 7 234 7030 0 497 € 614 1 400 2 20 O §07 093 1 061 2908 093 ¢0° 88 ¢
:J: 0 8000 0 65¢ 5 887 2 250 2 114 2 033 0 493 0 612 1 400 2 23 0 SO0 0 €89 t 16 3 %L 0 %3 ¢ GR 0 €87 0
\;‘ G 8500 0 624 0 874 2.14% 1 Q10 2 447 0 483 Q 409 1 400 2 27 0 492 0084 ! 149 1 %SG 0 93 499 ¢ g2 91
:35 0 9000 D 591 0 861 2 G6C 1 P22 2 G440 474 0.604 ) 400 2 30 0 48¢ 0086 1219 2996 0 93 410 0. 88 0!
‘ 0 9S00 9 SS9 9. 847 f 981 1 84S 2 Q85 0 460 0 S99 1 400 134 @ 478 0.07¢ L 287 405§ 093 4 {1 G 887 ¢
LY 10030 D528 0 B3 L ORLI 1779 2 14D O 444 0 592 t 400 2 37 0 470 D071 1 33 Q1% 0 % 4§ i3 & 8% D
'%;i 19500 0 498 0 819 1 8S0 1 72¢ 1 139 Q0 416 0.5B5 1.400 2 4t 0 442 0087 1357 4216 G 9¢ 414 1897 9
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